Exercise 1

Find the principal argument $\operatorname{Arg} z$ when

$$
\begin{gathered}
(a) z=\frac{i}{-2-2 i} ; \quad(b) z=(\sqrt{3}-i)^{6} . \\
\text { Ans. }(a)-3 \pi / 4 ; \quad \text { (b) } \pi
\end{gathered}
$$

Solution

Part (a)

$$
\begin{aligned}
\arg z & =\arg \left(\frac{i}{-2-2 i}\right) \\
& =\arg (i)-\arg (-2-2 i) \\
& =\left(\frac{\pi}{2}\right)-\left(\tan ^{-1} \frac{-2}{-2}+\pi\right)+2 n \pi, \quad n=0, \pm 1, \pm 2, \ldots \\
& =\frac{\pi}{2}-\left(\frac{\pi}{4}+\pi\right)+2 n \pi \\
& =-\frac{3 \pi}{4}+2 n \pi
\end{aligned}
$$

Since the principal argument $\operatorname{Arg} z$ is required to be between $-\pi$ and $\pi(-\pi<\operatorname{Arg} z \leq \pi)$, we choose $n=0$.

$$
\operatorname{Arg} z=-\frac{3 \pi}{4}
$$

Part (b)

Switch to polar form first to deal with the exponent.

$$
\begin{aligned}
\arg z & =\arg (\sqrt{3}-i)^{6} \\
& =\arg \left[\sqrt{(\sqrt{3})^{2}+(-1)^{2}} \exp \left(i \tan ^{-1} \frac{-1}{\sqrt{3}}\right)\right]^{6} \\
& =\arg \left[\sqrt{4} \exp \left(-i \frac{\pi}{6}\right)\right]^{6} \\
& =\arg \left(2 e^{-i \pi / 6}\right)^{6} \\
& =\arg \left(64 e^{-i \pi}\right) \\
& =-\pi+2 n \pi, \quad n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

Since the principal argument $\operatorname{Arg} z$ is required to be between $-\pi$ and $\pi(-\pi<\operatorname{Arg} z \leq \pi)$, we choose $n=1$.

$$
\operatorname{Arg} z=\pi
$$

